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This work presents the generalization of the concept of universal finite-size scaling functions to continuum
percolation. A high-efficiency algorithm for Monte Carlo simulations is developed to investigate, with exten-
sive realizations, the finite-size scaling behavior of stick percolation in large-size systems. The percolation
threshold of high precision is determined for isotropic widthless stick systems as Ncl

2=5.637 26�0.000 02,
with Nc as the critical density and l as the stick length. Simulation results indicate that by introducing a
nonuniversal metric factor A=0.106 910�0.000 009, the spanning probability of stick percolation on square
systems with free boundary conditions falls on the same universal scaling function as that for lattice
percolation.
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It is widely accepted that lattice percolation and con-
tinuum �or irregular lattice� percolation belong to the same
universality class in the sense that the latter possesses the
same critical exponents as the former as long as they have
identical dimensionalities and Hamiltonian symmetry �1–3�.
However, another important universality, i.e., universal
finite-size-scaling functions �UFSSFs�, has also attracted in-
terest in critical phenomena �4,5�. With given dimensionality,
percolating rule, boundary conditions, and aspect ratio, all
percolation systems fall on the same scaling functions by
introducing only a few nonuniversal system-dependent met-
ric factors �5�. Such a UFSSF concept has been verified for
many lattice percolation systems �6�. In this work, the UF-
SSF idea is generalized to continuum percolation. The gen-
eralization is realized through a systematic study of the
finite-size scaling behavior of two-dimensional �2D� stick
percolation.

Similar to disk percolation for systems consisting of ran-
domly placed disks �1,7�, stick percolation is also regarded
as an important representative of continuum percolation
�2,8–12�. Since the first consideration by Pike and Seager in
1974 �7�, stick percolation has attracted appreciable atten-
tion. In practice, stick percolation is also of importance due
to its promising applications in systems consisting of con-
ducting fibers �8,11�. In particular, the demonstration of elec-
tronic devices based on rodlike semiconducting nanopar-
ticles, e.g., silicon nanowires �13� and carbon nanotubes
�14�, as the fundamental building block for the rapidly grow-
ing field of macroelectronics �13,15�, has called for extensive
studies of stick percolation both theoretically �16–18� and
experimentally �19�. In spite of the successful development,
however, some crucial concept and knowledge are not yet
well established. For example, only the original work of Pike
and Seager �7� studied the percolation threshold for 2D stick
systems, but no further work has provided any improvement.
Moreover, a comprehensive understanding of one of the most
important percolation behaviors, i.e., finite-size scaling �20�
for stick systems, is still lacking. Besides its expected theo-
retical and experimental significances �6�, finite-size scaling

is especially important for stick percolation because of its
promising applications in macroelectronics where device di-
mension scaling is technically of dominant interest �13–15�.

In lattice percolation, the spanning probability R�p ,L�,
defined as the probability that the system with linear dimen-
sion L spans �i.e., percolates� at occupancy p, is best studied
with respect to finite-size scaling �5,21�. It has become well
understood from the finite-size scaling theory �6,20� that near
the critical point pc, the spanning probability obeys the gen-
eral scaling law,

R�p,L� � F��p − pc�L1/v� � F�x� , �1�

where x= �p− pc�L1/v is the scaling variable with v being the
correlation-length exponent �v=4 /3 for 2D systems� and
F�x� is the scaling function. However, further studies �5�
have suggested that appropriate corrections to Eq. �1� are
required concerning system size L, especially for small-size
systems. In general, the leading corrections include an ana-
lytical correction, of the order L−1, due to the finite-size cor-
rection and a nonanalytical correction, of the order L−� with
��0.9, due to irrelevant scaling variables �5,21�. For square
systems with free boundary conditions, the finite-size correc-
tion is dominant near pc �5�. Hence, in this case the leading
terms in the expansion of R�p ,L� should actually read as

R�p,L� � F�x� + b0/L , �2�

where b0 is a constant. For square systems with free bound-
ary conditions, F�x� has the following polynomial form for
small x:

F�x� = a0 + a1x + a3x3 + ¯ , �3�

where ai �i=0,1 ,2 , . . .� are constants. The system symmetry
and self-duality require that a0=1 /2 and ai=0 for other even
i �5,21�. Note that when multiple systems are considered,
F�x� itself is not universal. But by introducing a system-
dependent metric factor A and replacing x with x̂=Ax in Eqs.

�2� and �3�, the resultant scaling function F̂�x̂� becomes uni-

versal, i.e., F̂�x̂� is a UFSSF �5,6�. Because of the universal-

ity of F̂�x̂�, Rc�R�pc ,��= F̂�0�=a0=1 /2 is also universal
�5,21�.

In order to validate these theoretical results in continuum*Corresponding author: shili.zhang@angstrom.uu.se
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percolation, Monte Carlo simulations were performed to in-
vestigate the percolation behavior in stick percolation. Here,
2D isotropic widthless stick percolation is considered also on
square systems with free boundary conditions. Each stick, of
a fixed length l, is centered on a random site with a given
random orientation. In this work, l is set to unity, i.e., l=1.
The system size �or square length� is L. Two sticks lie in the
same cluster if they intersect. The boundaries of the system
are also regarded as extra sticks with length L and a fixed
orientation. If two opposite boundary sticks lie in the same
cluster, the system spans. Instead of occupancy p as in lattice
percolation, the behavior of stick percolation is studied in
terms of the stick density N, i.e., the number of sticks per
unit area. The percolation threshold is defined by the critical
density, Nc. Usually, the simulation for continuum percola-
tion requires much more calculations than for lattice perco-
lation. On the one hand, unlike in lattice percolation where a
site or bond has fixed neighbors, the number and position of
the neighbors of a site in continuum percolation are unknown
so that the bonding criterion is more complicated. On the
other hand, continuum percolation usually needs a higher site
density to span than lattice percolation. In addition, existing
algorithms for stick percolation are not sufficiently efficient.
For example, if there are n sticks in the system, using algo-
rithms directly based on the spanning rule described above to
determine whether the system percolates, as applied in Refs.
�2,12�, needs actually to check the connectivity property be-
tween each stick and every other stick. This procedure takes
time as long as O�n2� or O�N2L4� since N=n /L2. Because of
these reasons, simulations of stick percolation are often per-
formed for small amounts ��103� of sticks or at small num-
bers ��104� of realizations �2,7–12�. In the present work, a
high-efficiency algorithm is developed for Monte Carlo
simulations of stick percolation. This algorithm is developed
from the tree-based algorithm of Newman and Ziff �22� and
the subcell algorithm �1�. The tree-based algorithm has been
demonstrated to be highly efficient in lattice percolation
when it comes to calculations of quantities over the entire
range of occupancy in a single run �22�. The subcell algo-
rithm has recently also proven efficient for continuum perco-
lation �3,17�. In this work we present an algorithm based on
the synergy of these two algorithms for stick systems. How-
ever, though the algorithm presented here is described for the
spanning probability of stick percolation, it is generic and
can be readily applied for other types of continuum percola-
tion as well as other quantities, such as percolation probabil-
ity �6,20,22�, after slight modifications.

The algorithm in this work starts with a blank square sys-
tem in which there are only two boundary sticks of length L
on the two opposite boundaries. In order to avoid the trivial,
but enormous, work of determining whether a stick is a nor-
mal one or a boundary one, each of the two boundary sticks
is divided equally into L sticks with length l such that the
boundary sticks are identical to the normal sticks, as shown
in Fig. 1. But these L sticks are connecting and belong to the
same cluster. As in Ref. �22�, a tree structure is used to store
these clusters. In each cluster, one stick is chosen to be the
“root stick” and possesses the cluster label. All other sticks
have pointers pointing either to the root stick or to another
stick in the cluster, which implies that any stick in the cluster

points directly or indirectly �through a path comprising other
sticks� to the root stick and hence has the identical root stick.
The system is virtually divided into L�L subcells �or sub-
squares� with unity length l, as shown by the dashed lattices
in Fig. 1. With these preparations, a random normal stick is
generated by producing a random point �X ,Y� for its center
site and a random angle � with respect to the horizontal
direction for its orientation. Note that 0�X�L, 0�Y �L,
and 0����. The stick is first treated as a one-stick cluster
with itself as the root stick and registered into the subcell in
which the point �X ,Y� lies �23�. According to such a regis-
tration, a stick in a subcell �e.g., the one with solid bound-
aries in Fig. 1� is only possible to intersect sticks in the same
or the neighboring subcells �the gray ones in Fig. 1� since the
distance between its center and any stick center in other sub-
cells is greater than l, the maximum center distance of two
intersecting sticks. Then, it is only needed to check the con-
nectivity property between the newly generated stick and
those sticks belonging to the same or neighboring subcells.
When two sticks intersect, if they have the same root stick,
i.e., belonging to the same cluster, nothing needs to be done;
if not, the two corresponding clusters should be amalgamated
simply by adding a pointer from the root stick of one cluster
to that of the other. In order to expedite the amalgamation, a
“weighted union find with path compression” algorithm is
also applied as in Ref. �22�. Following these processes, we
repeat adding a random stick, registering it in a subcell,
checking its connectivity with other sticks in the same and
neighboring subcells, and amalgamating, if necessary, the
clusters until two opposite boundary sticks, e.g., the left-top
and right-top ones in Fig. 1, point to the same root stick. In
this case, the system percolates for the first time and the total
number of sticks is recorded as nf. By now, the whole simu-
lation procedure for one realization is accomplished. After
performing the simulation for m realizations, the spanning
probability Rn,L for n sticks on a system of size L is readily
obtained by initiating all Rn,L=0 and then for each realiza-

FIG. 1. �Color online� Schematic illustration of stick percolation
on a square system �L=5�. Each stick is of unity length l=1 and
described by its center site and orientation. For clarity, most sticks
are presented here only by their centers �black dots�. The two inter-
esting system boundaries �the left and right ones� are described also
by L connecting sticks. The system is divided into L�L subcells
�dashed lattices� with unity length l. Each stick is registered in the
subcell where its center lies. It is explicitly shown that a stick in a
subcell �with solid boundaries� is impossible to intersect any sticks
at other subcells than the same one or its neighbors �the gray ones
or light cyan ones�.
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tion, adding 1 /m to any Rn,L with n	nf. Note that simply by
virtue of the relation N=n /L2, one cannot obtain R�N ,L�
from Rn,L for any N with arbitrary precision. As n represents
the number of sticks in the system, N should be a multiple of
1 /L2. Such difficulty can be resolved in lattice percolation by
convolving all the measured observables with the binomial
distribution so as to generate a common “canonical en-
semble” for any value of p �21,22�. However, the binomial
distribution is not applicable in continuum percolation. Then
the Poisson distribution is instead employed in this work for
the convolution

R�N,L� = �
n=0

�

ne−


n!
Rn,L, �4�

where 
=NL2 for any N with arbitrary precision. Therefore,
this algorithm only takes time O�N2L2�, i.e., �O�n� �24�, to
produce R�N ,L� for all N, which is a significant improve-
ment over previous algorithms for stick percolation and com-
parable to those efficient algorithms for lattice percolation
�22�.

Hence, the present algorithm also permits Monte Carlo
studies of large-size stick systems with a large number of
realizations. Figure 2 shows the simulation results of stick
percolation for square systems with large sizes up to
L=256. In Fig. 2, Rn,L were collected on the basis of more
than 108 independent realizations for any L�100 and still
more than 107 realizations for any L�100. The summation
in Eq. �4� did not stop until the value of a proceeding term in
the series decreased below 10−20.

For a coarse observation, the four curves in Fig. 2�a� in-
tersect at R=0.5 �the dashed horizontal line in Fig. 2�a��,
implying that Rc�R�Nc ,��=0.5. This result, which will be
justified below, supports the conclusion that Rc is universal
�5,21� and extends it into continuum percolation.

However, for studies of the finite-size scaling behavior, a
high-precision value of the critical density Nc is yet to be
found. So far only a rough value has been reported by Pike
and Seager �7� as Ncl

2=5.71�0.24 �25�. The current simu-
lation results are of great potential for extraction of a high-
precision Nc. A good estimate for the critical density, NRc�L�,
can be given by the solution of R�NRc�L� ,L�=Rc �21�. In this
study, Rc=0.5 so that NRc�L� can be denoted as N0.5�L�. From
Eq. �2�, N0.5�L� is expected to converge to the true Nc as

N0.5�L� − Nc = −
b0

a1
L−1−1/v + ¯ . �5�

Figure 2�b� plots the calculated N0.5�L� versus L−1−1/v for
several large systems �L	32� and nearly a perfect linearity
appears, consistent with Eq. �5�. The best fit to these data
gives an estimate of Nc=5.637 26�0.000 02. For a general
stick length l, the percolation threshold should therefore be

Ncl
2 = 5.637 26 � 0.000 02. �6�

This value is consistent with, but significantly more precise
than, the result of Pike and Seager �7�. It is about 4 �3.924 79
to be exact� times that of the corresponding disk percolation
�26� with the disk diameter equal to l. It is also in agreement
with the result of Pike and Seager that the critical bonding

radius in stick percolation is approximately twice as large as
that in disk percolation �7�.

In order to determine coefficient b0 for the finite-size cor-
rection, L�R�N ,L�−0.5� is plotted against L in Fig. 2�c� for
different N near Nc. They almost converge to the same inter-
cept confirming the aforementioned Rc=0.5 in this stick per-
colation and yielding b0�−0.107. Finally, the simulation
data are plotted in Fig. 2�d� as F�x�=R�N ,L�−b0 /L versus
x= �N−Nc�L1/v, which exhibits a remarkable scaling behavior
since all the data within the interval −5�x�5 give nearly a
perfect fit �adjusted R2=0.999 993� to Eq. �3� with i up to 5.
This observation implies that the system symmetry and self-
duality also hold for stick percolation on square systems with
free boundary conditions. The fitting results are
a1=0.106 910�0.000 009, a3=−0.001 289�0.000 002, and
a5=0.000 010 93�0.000 000 05. Defining the metric factor
�5� A=�F�0� /�x=a1=0.106 910�0.000 009 and replacing x
with x̂=Ax, we finally obtain the UFSSF as

F̂�x̂�= 1
2 + x̂+K3x̂3+K5x̂5+¯ with K3=−1.055�0.002 and

K5=0.783�0.004. It agrees excellently with the UFSSF for
lattice percolation, where K3=−1.02�0.02 �5� and K5�1
�6�. This agreement confirms that stick percolation shares the
same UFSSF as lattice percolation.

Finally, it is worth mentioning that when the stick number
is very large, interpolation is also an effective method in
addition to convolution with the Poisson distribution. As a
matter of fact, using the “cubic spline” interpolation method
�27�, we have also obtained results that agree well with all
the parameters above except b0. The value of b0 is more
sensitive in small-size systems so that the difference between
the two methods is relatively large �b0�−0.097 from the
interpolation method�.

In summary, a high-efficiency algorithm has been devel-

FIG. 2. �Color online� Monte Carlo simulation results for stick
percolation on square systems with free boundary conditions. �a�
The spanning probability R as a function of stick density N for
different system sizes L. The horizontal dashed line represents
R=0.5. �b� The estimated critical density N0.5�L�, for L=32, 36, 40,
48, 64, 128, and 256, as a function of L−1−1/v. �c� Plot of
L�R−0.5� against log2�L� for N near Nc, with L=4, 8, 16, 32, 64,
128, and 256. The dashed curves represent R�N ,L� given by Eq. �2�,
neglecting higher orders than x, with b0=−0.107 and a1=0.107. �d�
Finite-size scaling plot of R after finite-size corrections.
Nc=5.637 26.
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oped for Monte Carlo simulations of stick percolation. This
algorithm allows for study of continuum percolation prob-
lems in large-size systems with extensive realizations and
high-precision results. This algorithm has been used to inves-
tigate the finite-size scaling behavior of isotropic widthless
stick percolation on square systems with free boundary con-
ditions. In addition, the percolation threshold with signifi-
cantly improved accuracy has been determined for stick per-
colation. Simulation results show that similar to lattice
percolation, stick percolation is also subjected to finite-size
corrections. After such corrections, the spanning probability
exhibits an excellent finite-size scaling behavior. With the
introduction of a nonuniversal metric factor, the scaling func-
tion coincides with that for lattice percolation. These results
generalize the concept of universal finite-size scaling func-
tion and make it applicable for continuum percolation. The
present work is of both practical and theoretical significan-

ces. In practice, the knowledge of finite-size scaling of stick
percolation is helpful in expediting the development of the
newly emerging macroelectronics based on rodlike nanopar-
ticles. In theory, this work confirms that continuum percola-
tion belongs to the same universality class as lattice percola-
tion, not only because they share the same critical exponents
but also because they fall on the same universal scaling func-
tions.
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with the Poisson distribution for continuum percolation,
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